80 research outputs found

    Simulation of an array-based neural net model

    Get PDF
    Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running

    High level cognitive information processing in neural networks

    Get PDF
    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field

    Reflexive hyperbole, both ways

    Get PDF

    The centrality of instantiations

    Get PDF

    Time phases, pointers, rules and embedding

    Get PDF

    The Meta-Dynamic Nature of Consciousness

    Get PDF
    How, if at all, consciousness can be part of the physical universe remains a baffling problem. This article outlines a new, developing philosophical theory of how it could do so, and offers a preliminary mathematical formulation of a physical grounding for key aspects of the theory. Because the philosophical side has radical elements, so does the physical-theory side. The philosophical side is radical, first, in proposing that the productivity or dynamism in the universe that many believe to be responsible for its systematic regularities is actually itself a physical constituent of the universe, along with more familiar entities. Indeed, it proposes that instances of dynamism can themselves take part in physical interactions with other entities, this interaction then being “meta-dynamism” (a type of meta-causation). Secondly, the theory is radical, and unique, in arguing that consciousness is necessarily partly constituted of meta-dynamic auto-sensitivity, in other words it must react via meta-dynamism to its own dynamism, and also in conjecturing that some specific form of this sensitivity is sufficient for and indeed constitutive of consciousness. The article proposes a way for physical laws to be modified to accommodate meta-dynamism, via the radical step of including elements that explicitly refer to dynamism itself. Additionally, laws become, explicitly, temporally non-local in referring directly to quantity values holding at times prior to a given instant of application of the law. The approach therefore implicitly brings in considerations about what information determines states. Because of the temporal non-locality, and also because of the deep connections between dynamism and time-flow, the approach also implicitly connects to the topic of entropy insofar as this is related to time
    corecore